Share this
measuring tranexamic acid from microsamples to control hemorrhage
by James Rudge, PhD, Technical Director, Neoteryx on Aug 29, 2022 9:00:00 AM
An article by Stanislas Grassin-Delyle et al at three institutions in the United Kingdom and France, published in the June 2020 issue of Bioanalysis, reported on the successful validation of the antifibrinolytic drug tranexamic acid (TXA) from whole blood samples and dried blood microsamples. Tranexamic acid is commonly used to help stop bleeding by increasing blood clotting, typically for patients prone to heavy menstrual bleeding or frequent nose bleeds.
The paper summarized here is entitled “Tranexamic acid quantification in human whole blood using liquid samples or volumetric absorptive microsampling devices.” It describes a thorough method optimization and validation of this drug from both matrices, using Mitra® devices with VAMS® technology for the volumetric dried blood sampling.
It also discusses testing the method on patients in a phase 1 clinical trial. The research group concluded that these methods can be used in subsequent studies for a better understanding of the pharmacokinetics and pharmacology of tranexamic acid.
Impact of Uncontrolled Bleeding, or Hemorrhage
A review in the New England Journal of Medicine (2018) reported that around 60,000 Americans die from blood loss every year. Worldwide that amount is nearly two million, and 75% of these cases occur as a result of trauma. Drugs that can safely improve blood clotting to stop life-threatening blood loss are vital to reducing the mortality rate from hemorrhage.
One of the most effective drugs (tranexamic acid) to treat hemorrhage dates to the 1960s, from Utako and Shosuke Okamoto's laboratory in Japan. The drug was developed in an effort to reduce death by blood loss, especially in postpartum hemorrhage – a major killer of Japanese women at the time. Tranexamic acid is a more potent form of Epsilon-aminocaproic acid (EACA), a chemical entity that had been tested by Okamoto's group in the 1950s.
Tranexamic acid is synthetically derived from the amino acid lysine and its key mode of action is to inhibit the enzyme plasmin, which then acts to displace the zymogen plasminogen from the surface of another protein fibrin. Plasmin is a serine protease, which acts to dissolve fibrin blood clots. If plasmin is inhibited, the clots are prevented from being dispersed, thus minimizing blood loss through this mechanism.
Research into Tranexamic Acid
Like methotrexate (discussed in a recent blog), another drug that dates back to the 1960s, there is still more to learn about tranexamic acid. Typically, tranexamic acid is given intravenously, especially in patients with acute life-threatening hemorrhage, because IV dosing is a reliable method to rapidly administer the drug.
The pharmacokinetics of other drug administration routes is poorly understood. Due to this lack of pharmacokinetic knowledge, the research group that co-authored the paper summarized here embarked on a feasibility study to investigate alternative dosing routes. The group chose to use Mitra® devices based on VAMS® technology because these are based on volumetric capillary microsampling.
This type of device can be used remotely, which negates the need for phlebotomists since samples can be collected by practically anyone, anywhere and at any time. The researchers commented that processing dried blood VAMS samples would be more efficient during lab extraction as compared to producing serum or plasma before extraction.
Tranexamic Acid Study Method and Findings
- Liquid whole blood and dried blood Mitra-VAMS devices (both 10 µL) were compared.
- Both matrices were extracted in Water / Methanol (20/80, v, v) plus Internal standard (IS).
- Extraction from VAMS was optimized requiring increased shaking time and sonication. Extraction recoveries were high (93-101%).
- A hematocrit range (30-70%) was then tested; researchers concluded that hematocrit did not affect tranexamic acid measurements with VAMS devices. When acetonitrile was evaluated, it yielded very poor peak shapes.
- Analysis was conducted using LC-MS/MS.
- Successful method validation was carried out in accordance with European Medicines Agency and US Food and Drug Administration (FDA) guidelines for bioanalytical method development.
- Highlights of the method validation are listed as follows:
- No carryover occurred even after ULOQ.
- LLOQ was set to 0.1 mg/L where both matrices passed both intra- and inter-day accuracy and precision.
- Matrix effects of 19.2-38.7% were observed at two concentration levels but the IS was able to compensate and the CVs of the IS normalized method were lower than 10%.
- The VAMS samples were stable for 1 month at 50° C
- No carryover occurred even after ULOQ.
- Suitability of the method was piloted on 5 volunteers who were participating in a phase 1 clinical trial entitled “Pharmacokinetics of Tranexamic Acid After Oral, Intramuscular or Intravenous Administration: A Prospective, Randomised, Cross-over Trial in Healthy Volunteers. (PharmacoTXA).”
- After each dosing event, both venous samples and capillary VAMS samples were collected. Venous samples were stored at -80° C and VAMS samples were stored at room temperature before analysis. Excellent agreement was observed between both matrices and the group commented that this demonstrated the feasibility of measuring TXA in those whole blood samples.
- A clinical validation study is ongoing.
Tranexamic Acid Study Authors’ Conclusions
- This was the first method to quantify tranexamic acid in liquid whole blood and dried VAMS samples.
- The assay was successfully validated and even with only 10 µL microsamples, the method showed a high dynamic range.
- Both matrices showed excellent agreement, and both can be used in studies to understand the pharmacokinetics and pharmacology of tranexamic acid (TXA).
- Tranexamic acid is highly stable at 50 °C on VAMS devices, which allows researchers to perform further pharmacokinetic studies to improve the dosing regimens of all patient populations.
Neoteryx Comments
Optimizing extraction conditions is critical to delivering successful validations. Stanislas Grassin-Delyle et al, evaluated several conditions and found an optimal procedure that yielded a very high extraction recovery. In terms of choice of extraction solvent, acetonitrile gave poor peak shapes, which was possibly due to injection solvent mobile phase mismatch. However, in contrast, the weaker Methanol / Water extraction solvent yielded very acceptable peak shapes.
It must be noted that if there is a situation where extracting in a strong solvent provides optimal extraction conditions but delivers poor peak shapes, there are several strategies to solve this. The first is to simply dilute the sample with water, post extraction. However here it is important to check for sample solubility. and that there is enough sensitivity for the method. If sensitivity is an issue, and if the sample is weak enough, injecting a larger volume sometimes helps.
Another solution is to inject a smaller volume of the undiluted extract on the LC-MS/MS but, again, you may face sensitivity issues. Finally, a common solution is to evaporate the same to dryness and reconstitute into mobile phase A. This solution can be highly successful, though losses can be observed, with dried analyte sticking to the side of the vessel.
This article was summarized for our readers by James Rudge, PhD, Neoteryx Technical Director. This is curated content. To learn more about the important research outlined in this blog, visit the original article in Bioanalysis.
Image Credits: iStock, Neoteryx, Trajan Scientific and Medical
Access this microsampling article and others in our Technical Resource Library.
Share this
- Microsampling (206)
- Research, Remote Research (119)
- Venipuncture Alternative (106)
- Clinical Trials, Clinical Research (83)
- Mitra® Device (73)
- Therapeutic Drug Monitoring, TDM (50)
- Dried Blood Spot, DBS (38)
- Biomonitoring, Health, Wellness (31)
- Infectious Disease, Vaccines, COVID-19 (24)
- Decentralized Clinical Trial (DCT) (22)
- Blood Microsampling, Serology (21)
- Omics, Multi-Omics (19)
- Specimen Collection (17)
- Toxicology, Doping, Drug/Alcohol Monitoring, PEth (17)
- hemaPEN® Device (13)
- Preclinical Research, Animal Studies (12)
- Skin Microsampling, Microbiopsy (12)
- Pharmaceuticals, Drug Development (9)
- Harpera Device (5)
- Industry News, Microsampling News (5)
- Antibodies, MAbs (3)
- Company Press Release, Product Press Release (3)
- Environmental Toxins, Exposures (1)
- November 2024 (1)
- October 2024 (3)
- September 2024 (1)
- June 2024 (1)
- May 2024 (1)
- April 2024 (4)
- March 2024 (1)
- February 2024 (2)
- January 2024 (4)
- December 2023 (3)
- November 2023 (3)
- October 2023 (3)
- September 2023 (3)
- July 2023 (3)
- June 2023 (2)
- April 2023 (2)
- March 2023 (2)
- February 2023 (2)
- January 2023 (3)
- December 2022 (2)
- November 2022 (3)
- October 2022 (4)
- September 2022 (3)
- August 2022 (5)
- July 2022 (2)
- June 2022 (2)
- May 2022 (4)
- April 2022 (3)
- March 2022 (3)
- February 2022 (4)
- January 2022 (5)
- December 2021 (3)
- November 2021 (5)
- October 2021 (3)
- September 2021 (3)
- August 2021 (4)
- July 2021 (4)
- June 2021 (4)
- May 2021 (4)
- April 2021 (3)
- March 2021 (5)
- February 2021 (4)
- January 2021 (4)
- December 2020 (3)
- November 2020 (5)
- October 2020 (4)
- September 2020 (3)
- August 2020 (3)
- July 2020 (6)
- June 2020 (4)
- May 2020 (4)
- April 2020 (3)
- March 2020 (6)
- February 2020 (3)
- January 2020 (4)
- December 2019 (5)
- November 2019 (4)
- October 2019 (2)
- September 2019 (4)
- August 2019 (4)
- July 2019 (3)
- June 2019 (7)
- May 2019 (6)
- April 2019 (5)
- March 2019 (6)
- February 2019 (5)
- January 2019 (8)
- December 2018 (3)
- November 2018 (4)
- October 2018 (7)
- September 2018 (6)
- August 2018 (5)
- July 2018 (8)
- June 2018 (6)
- May 2018 (5)
- April 2018 (6)
- March 2018 (4)
- February 2018 (6)
- January 2018 (4)
- December 2017 (2)
- November 2017 (3)
- October 2017 (2)
- September 2017 (4)
- August 2017 (2)
- July 2017 (4)
- June 2017 (5)
- May 2017 (6)
- April 2017 (6)
- March 2017 (5)
- February 2017 (4)
- January 2017 (1)
- July 2016 (3)
- May 2016 (1)
- April 2016 (2)
No Comments Yet
Let us know what you think