Share this
a brief introduction to next generation sequencing
by Neoteryx on Jul 25, 2017 5:25:00 AM
Next Generation Sequencing (NGS) is a modern sequencing technology also known as high throughput sequencing. It allows RNA/DNA sequencing much more quickly than Sanger sequencing.
NGS sequencing includes Illumina, Roche 454, Ion Torrent, and Solid sequencing.

Illumina Sequencing
It’s a single stroke sequencing of vast numbers of short threads. Illumina sequencing utilizes approximately100-150bp of reads. On the other hand, you should tie up longer fragments up to generic adaptors, then hardened to a slide using adaptors. Moreover, amplifying the reads using Polymerase chain reaction (PCR) individually creates a spot with numerous copies of the same read. Separation of each read into single strand is then done before sequencing.
454 Sequencing
First of all, like Illumina, it uses longer reads. It does this by reading optical signals by sequencing multiple reads at once as you add their bases. Secondly, you should split RNA/DNA into 1kb of shorter reads. Furthermore, Polymerase chain reaction (PCR) amplifies the fragments using specific primers and placed in a single well of a slide. Finally, flooding of the slide with one of the four nucleoside triphosphate (NTP) is then done for sequencing.
ION Torrent/Proton Sequencing
ION Torrent/Proton doesn’t make use of optical signals like Illumina and 454 sequencing. They capitalize on the fact that the addition of dNTP to DNA polymer releases H+ ion. However, like other NGS you should split input RNA/DNA by ~200bp.
Applications of Mitra Microsampling Technology in NGS
The Mitra microsampler allows the production of accurate results from molecular research labs. Blood collection via Mitra microsampler is credited for being non-evasive, less costly, and very efficient.
Secondly, the immediate benefits provided are working with volumetric accurate dried blood spot which reduces the cost of incidental reworks.
Moreover, it’s amenable to RNA/DNA isolation and purification using central labs kits. The blood collection is convenient to the donor, and comes without expensive refrigeration or special transportation. Finally, the samples are compatible with Next Generation Sequencing platforms.
The main advantages of NGS over traditional Sanger sequencing include speed, cost, accuracy, and the sample size. In addition, NGS requires less RNA/DNA than Sanger sequencing.
Share this
- Venipuncture Alternative (109)
- Clinical Trials, Clinical Research (69)
- Mitra® Device (44)
- Research, Remote Research (37)
- Dried Blood Spot, DBS (32)
- Therapeutic Drug Monitoring, TDM (16)
- Decentralized Clinical Trial (DCT) (12)
- Blood Microsampling, Serology (10)
- Infectious Disease, Vaccines, COVID-19 (10)
- Microsampling (9)
- hemaPEN® Device (7)
- Toxicology, Doping, Drug/Alcohol Monitoring, PEth (6)
- Pharmaceuticals, Drug Development (5)
- Harpera® Tool (4)
- Omics, Multi-Omics (4)
- Skin Microsampling, Microbiopsy (4)
- Antibodies, MAbs (3)
- Biomonitoring, Health, Wellness (3)
- Preclinical Research, Animal Studies (2)
- April 2023 (2)
- March 2023 (2)
- February 2023 (2)
- January 2023 (3)
- December 2022 (2)
- November 2022 (3)
- October 2022 (4)
- September 2022 (3)
- August 2022 (5)
- July 2022 (2)
- June 2022 (2)
- May 2022 (4)
- April 2022 (3)
- March 2022 (3)
- February 2022 (4)
- January 2022 (5)
- December 2021 (3)
- November 2021 (5)
- October 2021 (3)
- September 2021 (3)
- August 2021 (4)
- July 2021 (4)
- June 2021 (4)
- May 2021 (4)
- April 2021 (3)
- March 2021 (5)
- February 2021 (4)
- January 2021 (4)
- December 2020 (3)
- November 2020 (5)
- October 2020 (4)
- September 2020 (3)
- August 2020 (3)
- July 2020 (6)
- June 2020 (4)
- May 2020 (4)
- April 2020 (3)
- March 2020 (6)
- February 2020 (3)
- January 2020 (4)
- December 2019 (5)
- November 2019 (6)
- October 2019 (4)
- September 2019 (5)
- August 2019 (5)
- July 2019 (4)
- June 2019 (7)
- May 2019 (6)
- April 2019 (5)
- March 2019 (6)
- February 2019 (6)
- January 2019 (8)
- December 2018 (3)
- November 2018 (4)
- October 2018 (7)
- September 2018 (8)
- August 2018 (5)
- July 2018 (8)
- June 2018 (6)
- May 2018 (5)
- April 2018 (6)
- March 2018 (5)
- February 2018 (7)
- January 2018 (4)
- December 2017 (2)
- November 2017 (3)
- October 2017 (2)
- September 2017 (4)
- August 2017 (2)
- July 2017 (4)
- June 2017 (5)
- May 2017 (6)
- April 2017 (6)
- March 2017 (5)
- February 2017 (4)
- January 2017 (1)
- July 2016 (3)
- May 2016 (1)
- April 2016 (2)
No Comments Yet
Let us know what you think