<img alt="" src="https://secure.agile-company-365.com/781893.png" style="display:none;">
the microsampling blog

the hunt for biomarkers: microsampling in omics

a computer illustration of microscopic spaceIn recent years, the field of biomedical and clinical research has seen the adaptation of genomic, proteomic and other omics-based approaches in understanding the mechanisms of diseases.

The approach has also been useful in the identification of biomarkers for diagnostics and therapeutic development.

While there is a rapid advancement in the application of omics technologies in clinical research, one key challenge remains. The challenge is the functional analysis and interpretation of the data due to the long timeframe of omics research studies.

An Overview of Omics Technology and its Purpose

The term “omics” is a word used to describe two things. The first is the comprehensive study of the interaction between the cell of an organism and the environment. The second is the technologies used in measuring transformation products.

Unlike the historical scientific approach (the “reduction approach”), omics presents a different approach in which a single gene product is used to model how the entire system will work in response to a stimulus or stimuli. The approach utilizes a wide range of data providing information on the development of new biomarkers applicable in:

  • diagnostics and therapeutics
  • patient monitoring
  • prevention of diseases

It may also provide insight into both chronic and acute diseases.

In environmental and occupational health, omics can be applied where studies using genomics, proteomics, transcriptomics, and epigenomics can be used to assess associations with identifiable biomarkers or effects on health. Therefore, omics technology can be described as a universal detection of proteins, metabolites, genes, and mRNA in any given biological sample.

Microsampling in Omics

Omics technologies demand very sensitive instruments. This is because even the smallest of external factors affecting a lab experiment may impact the outcome of the results. Therefore, high-level selectivity in the equipment applied is needed. Microsampling technology can provide a collection of small samples of biological fluid while maintaining sample integrity.

The availability of a universal biomarker detector (omics) together with microsampling could be the next step in the evolution of medicine. For example, a single drop of blood (a microsample) could map an individual’s phenome and genome.

With this information, it would be possible to detect any significant abnormalities and act upon the information. This means better personalized medicine, which translates as a brighter future for both patients and medical practitioners.

Do you have questions about microsampling for omics studies? Visit our Omics Resources page. 

Advance your omics research with resources on how others use microsamples to study DNA, metabolites, lipids and different proteins.

In some territories our devices are supplied for therapeutic or IVD use Outside of those territories our devices are supplied for research use only


No Comments Yet

Let us know what you think

Receive Blog Notifications